NSS Sample Code Sample1¶
NSS Sample Code 1: Key Generation and Transport Between Servers.¶
This is an example program that demonstrates how to do key generation and transport between cooperating servers. This program shows the following:
RSA key pair generation
Naming RSA key pairs
Looking up a previously generated key pair by name
Creating AES and MAC keys (or encryption and MAC keys in general)
Wrapping symmetric keys using your own RSA key pair so that they can be stored on disk or in a database.
As an alternative to TOKEN symmetric keys
As a way to store large numbers of symmetric keys
Wrapping symmetric keys using an RSA key from another server
Unwrapping keys using your own RSA key pair
The main part of the program shows a typical sequence of events for two servers that are trying
to extablish a shared key pair.
We will add message protection (encryption and MACing) examples to this program in the future.
Sample Code¶
#include <iostream.h>
#include "pk11pub.h"
#include "keyhi.h"
#include "nss.h"
// Key management for keys share among multiple hosts
//
// This example shows how to use NSS functions to create and
// distribute keys that need to be shared among multiple servers
// or hosts.
//
// The management scheme assumes that one host is PRIMARY. It
// generates the secret keys that will be used by all participating
// hosts. The other hosts (SECONDARY) request keys from the
// primary host. As an alternative, new keys may be sent to the
// current set of SECONDARY hosts when they are generated by the
// PRIMARY. In this case, the PRIMARY maintains a list of the
// secondary hosts.
//
// The sequence of events is:
// 1. The primary host generates a new symmetric key. This key
// may be used for an encryption mechanism (DES or AES) or for
// integrity (MD5_HMAC or SHA1_HMAC). This key needs to be
// permanent, since it may be used during several runs of the
// server. (Currently NSS doesn't store persistant keys. Steps
// 1a through 1x show how to do this).
// 1a. The primary host generates an RSA keypair that will be used
// store keys locally.
// 1b. The primary host wraps the newly generated key using the
// RSA key and stores the wrapped key data in a local file.
// 1c. The primary host unwraps the key using the RSA key each time
// access to the key is required, such as at server startup.
// 2. The secondary host generates an RSA keypair that will be used
// to transport keys between the primary host and itself. This
// key needs to exist long enough to be used to process the
// response to a key transport request that is made to the primary
// server. The example here shows how to create a permanent (token)
// RSA key for this purpose. (This key will also be used for
// storage of the keys, since NSS does not support permanent symmetric
// keys at the current time.)
// 3. The secondary host sends its RSA public key to the primary host as
// part of a request for a particular key, or to be added to a list
// of secondary hosts.
// 4. The administrator of the primary host verifies that the RSA key
// that was received belongs to a valid secondary host. The adminstrator
// may do this by checking that the key was received in a signed email
// message, or by checking a digest value with the adminstrator of the
// secondary host. [Need support for digest check values]
// 5. The primary host exports (wraps) the symmetric key using the
// secondary host's RSA key. The wrapped value is sent back to
// the secondary host.
// 6. The administrator of the secondary host verifies that the wrapped
// key data came from the primary host. The same methods outlined
// in step 4 may be used here.
// 7. The secondary host unwraps the key using its own RSA private key.
// NOTE: currently NSS does not support permanent symmetric keys.
// The secondary host may store the wrapped value that was received
// from the primary in a file, and unwrap it each time the key is required
// (such as at server startup).
// NSS actually has some support for permanent symmetric keys. However this
// example will need to be modified somewhat in order to demonstrate it.
// Utility function to print hex data
static void
printBuffer(unsigned char *digest, unsigned int len)
{
int i;
cout << "length: " << len << endl;
for(i = 0;i < len;i++) printf("%02x ", digest[i]);
cout << endl;
}
// XXX Data protection
// - takes an input buffer, applies the encryption
// and MAC, and generates a buffer with the result.
// - the application sends or uses the result (possibly
// after base64 encoding it.
//
// Server - an instance of a server that is part of a
// cluster of servers that are sharing a common set
// of encryption and MACing keys.
//
class Server
{
public:
// Initializes the server instance. In particular, this
// creates the key pair that is used for wrapping keys
int Init();
// Generates keys for encryption (AES) and MACing. The
// wrapped keys are stored in data files.
int GenerateKeys();
// Gets the server's public key (wrapping key) to
// send to another server. This becomes the input to
// the ExportKeys method on the remote server.
int ExportPublicKey(SECItem **pubKeyData);
// Export the encryption and key using the key
// provided. The key should come from another server
// in the cluster. (The admin should verify this.)
//
// In this example, the server must be started to perform
// this function (see Start())
int ExportKeys(SECItem *pubKey, SECItem **wrappedEncKey,
SECItem **wrappedMacKey);
// Import the keys received from another server in the
// cluster. The admin should make sure the keys actually
// came from the correct source.
int ImportKeys(SECItem *wrappedEncKey, SECItem *wrappedMacKey);
// Start the server, loading the encryption and MACing keys
// from files
int Start();
// Shut down the server. (For completeness)
int Shutdown();
// Compare keys in two server instances. Use this in the
// example to make sure the keys are transferred correctly.
// This will not work in real life!
//
// The servers must be started
int CompareKeys(Server *peer);
// Create a server - the name distiguish the keys in the
// shared database in this example
Server(const char *serverName);
~Server();
private:
int getPrivateKey(SECKEYPrivateKey **prvKey);
int getPublicKey(SECKEYPublicKey **pubKey);
int wrapKey(PK11SymKey *key, SECKEYPublicKey *pubKey, SECItem **data);
// export raw key (unwrapped) DO NOT USE
int rawExportKey(PK11SymKey *key, SECItem **data);
char *mServerName;
// These items represent data that might be stored
// in files or in a configuration file
SECItem *mWrappedEncKey;
SECItem *mWrappedMacKey;
// These are the runtime keys as loaded from the files
PK11SymKey *mEncKey;
PK11SymKey *mMacKey;
};
Server::Server(const char *serverName)
: mServerName(0), mWrappedEncKey(0), mWrappedMacKey(0),
mEncKey(0), mMacKey(0)
{
// Copy the server name
mServerName = PL_strdup(serverName);
}
Server::~Server()
{
if (mServerName) PL_strfree(mServerName);
if (mWrappedEncKey) SECITEM_FreeItem(mWrappedEncKey, PR_TRUE);
if (mWrappedMacKey) SECITEM_FreeItem(mWrappedMacKey, PR_TRUE);
if (mEncKey) PK11_FreeSymKey(mEncKey);
if (mMacKey) PK11_FreeSymKey(mMacKey);
}
int
Server::Init()
{
int rv = 0;
SECKEYPrivateKey *prvKey = 0;
SECKEYPublicKey *pubKey = 0;
PK11SlotInfo *slot = 0;
PK11RSAGenParams rsaParams;
SECStatus s;
// See if there is already a private key with this name.
// If there is one, no further action is required.
rv = getPrivateKey(&prvKey);
if (rv == 0 && prvKey) goto done;
rv = 0;
// These could be parameters to the Init function
rsaParams.keySizeInBits = 1024;
rsaParams.pe = 65537;
slot = PK11_GetInternalKeySlot();
if (!slot) { rv = 1; goto done; }
prvKey = PK11_GenerateKeyPair(slot, CKM_RSA_PKCS_KEY_PAIR_GEN, &rsaParams,
&pubKey, PR_TRUE, PR_TRUE, 0);
if (!prvKey) { rv = 1; goto done; }
// Set the nickname on the private key so that it
// can be found later.
s = PK11_SetPrivateKeyNickname(prvKey, mServerName);
if (s != SECSuccess) { rv = 1; goto done; }
done:
if (slot) PK11_FreeSlot(slot);
if (pubKey) SECKEY_DestroyPublicKey(pubKey);
if (prvKey) SECKEY_DestroyPrivateKey(prvKey);
return rv;
}
int
Server::GenerateKeys()
{
int rv = 0;
SECKEYPublicKey *pubKey = 0;
PK11SlotInfo *slot = 0;
// Choose a slot to use
slot = PK11_GetInternalKeySlot();
if (!slot) { rv = 1; goto done; }
// Get our own public key to use for wrapping
rv = getPublicKey(&pubKey);
if (rv) goto done;
// Do the Encryption (AES) key
if (!mWrappedEncKey)
{
PK11SymKey *key = 0;
// The key size is 128 bits (16 bytes)
key = PK11_KeyGen(slot, CKM_AES_KEY_GEN, 0, 128/8, 0);
if (!key) { rv = 1; goto aes_done; }
rv = wrapKey(key, pubKey, &mWrappedEncKey);
aes_done:
if (key) PK11_FreeSymKey(key);
if (rv) goto done;
}
// Do the Mac key
if (!mWrappedMacKey)
{
PK11SymKey *key = 0;
// The key size is 160 bits (20 bytes)
key = PK11_KeyGen(slot, CKM_GENERIC_SECRET_KEY_GEN, 0, 160/8, 0);
if (!key) { rv = 1; goto mac_done; }
rv = wrapKey(key, pubKey, &mWrappedMacKey);
mac_done:
if (key) PK11_FreeSymKey(key);
}
done:
if (slot) PK11_FreeSlot(slot);
return rv;
}
int
Server::ExportPublicKey(SECItem **pubKeyData)
{
int rv = 0;
SECKEYPublicKey *pubKey = 0;
rv = getPublicKey(&pubKey);
if (rv) goto done;
*pubKeyData = SECKEY_EncodeDERSubjectPublicKeyInfo(pubKey);
if (!*pubKeyData) { rv = 1; goto done; }
done:
if (pubKey) SECKEY_DestroyPublicKey(pubKey);
return rv;
}
int
Server::ExportKeys(SECItem *pubKeyData, SECItem **wrappedEncKey,
SECItem **wrappedMacKey)
{
int rv;
CERTSubjectPublicKeyInfo *keyInfo = 0;
SECKEYPublicKey *pubKey = 0;
SECItem *data = 0;
// Make sure the keys are available (server running)
if (!mEncKey || !mMacKey) { rv = 1; goto done; }
// Import the public key of the other server
keyInfo = SECKEY_DecodeDERSubjectPublicKeyInfo(pubKeyData);
if (!keyInfo) { rv = 1; goto done; }
pubKey = SECKEY_ExtractPublicKey(keyInfo);
if (!pubKey) { rv = 1; goto done; }
// Export the encryption key
rv = wrapKey(mEncKey, pubKey, &data);
if (rv) goto done;
// Export the MAC key
rv = wrapKey(mMacKey, pubKey, wrappedMacKey);
if (rv) goto done;
// Commit the rest of the operation
*wrappedEncKey = data;
data = 0;
done:
if (data) SECITEM_FreeItem(data, PR_TRUE);
if (pubKey) SECKEY_DestroyPublicKey(pubKey);
if (keyInfo) SECKEY_DestroySubjectPublicKeyInfo(keyInfo);
return rv;
}
int
Server::ImportKeys(SECItem *wrappedEncKey, SECItem *wrappedMacKey)
{
int rv = 0;
if (mWrappedEncKey || mWrappedMacKey) { rv = 1; goto done; }
mWrappedEncKey = SECITEM_DupItem(wrappedEncKey);
if (!mWrappedEncKey) { rv = 1; goto done; }
mWrappedMacKey = SECITEM_DupItem(wrappedMacKey);
if (!mWrappedMacKey) { rv = 1; goto done; }
done:
return rv;
}
int
Server::Start()
{
int rv;
SECKEYPrivateKey *prvKey = 0;
rv = getPrivateKey(&prvKey);
if (rv) goto done;
if (!mEncKey)
{
// Unwrap the encryption key from the "file"
// This function uses a mechanism rather than a key type
// Does this need to be "WithFlags"??
mEncKey = PK11_PubUnwrapSymKey(prvKey, mWrappedEncKey,
CKM_AES_CBC_PAD, CKA_ENCRYPT, 0);
if (!mEncKey) { rv = 1; goto done; }
}
if (!mMacKey)
{
// Unwrap the MAC key from the "file"
// This function uses a mechanism rather than a key type
// Does this need to be "WithFlags"??
mMacKey = PK11_PubUnwrapSymKey(prvKey, mWrappedMacKey,
CKM_MD5_HMAC, CKA_SIGN, 0);
if (!mMacKey) { rv = 1; goto done; }
}
done:
if (prvKey) SECKEY_DestroyPrivateKey(prvKey);
return rv;
}
int
Server::Shutdown()
{
if (mEncKey) PK11_FreeSymKey(mEncKey);
if (mMacKey) PK11_FreeSymKey(mMacKey);
mEncKey = 0;
mMacKey = 0;
return 0;
}
int
Server::CompareKeys(Server *peer)
{
int rv;
SECItem *macKey1 = 0;
SECItem *macKey2 = 0;
SECItem *encKey1 = 0;
SECItem *encKey2 = 0;
// Export each of the keys in raw form
rv = rawExportKey(mMacKey, &macKey1);
if (rv) goto done;
rv = rawExportKey(peer->mMacKey, &macKey2);
if (rv) goto done;
rv = rawExportKey(mEncKey, &encKey1);
if (rv) goto done;
rv = rawExportKey(peer->mEncKey, &encKey2);
if (rv) goto done;
if (!SECITEM_ItemsAreEqual(macKey1, macKey2)) { rv = 1; goto done; }
if (!SECITEM_ItemsAreEqual(encKey1, encKey2)) { rv = 1; goto done; }
done:
if (macKey1) SECITEM_ZfreeItem(macKey1, PR_TRUE);
if (macKey2) SECITEM_ZfreeItem(macKey2, PR_TRUE);
if (encKey1) SECITEM_ZfreeItem(encKey1, PR_TRUE);
if (encKey2) SECITEM_ZfreeItem(encKey2, PR_TRUE);
return rv;
}
// Private helper, retrieves the private key for the server
// from the database. Free the key using SECKEY_DestroyPrivateKey
int
Server::getPrivateKey(SECKEYPrivateKey **prvKey)
{
int rv = 0;
PK11SlotInfo *slot = 0;
SECKEYPrivateKeyList *list = 0;
SECKEYPrivateKeyListNode *n;
char *nickname;
slot = PK11_GetInternalKeySlot();
if (!slot) goto done;
// ListPrivKeysInSlot looks like it should check the
// nickname and only return keys that match. However,
// that doesn't seem to work at the moment.
// BUG: XXXXX
list = PK11_ListPrivKeysInSlot(slot, mServerName, 0);
cout << "getPrivateKey: list = " << list << endl;
if (!list) { rv = 1; goto done; }
for(n = PRIVKEY_LIST_HEAD(list);
!PRIVKEY_LIST_END(n, list);
n = PRIVKEY_LIST_NEXT(n))
{
nickname = PK11_GetPrivateKeyNickname(n->key);
if (PL_strcmp(nickname, mServerName) == 0) break;
}
if (PRIVKEY_LIST_END(n, list)) { rv = 1; goto done; }
*prvKey = SECKEY_CopyPrivateKey(n->key);
done:
if (list) SECKEY_DestroyPrivateKeyList(list);
return rv;
}
int
Server::getPublicKey(SECKEYPublicKey **pubKey)
{
int rv;
SECKEYPrivateKey *prvKey = 0;
rv = getPrivateKey(&prvKey);
if (rv) goto done;
*pubKey = SECKEY_ConvertToPublicKey(prvKey);
if (!*pubKey) { rv = 1; goto done; }
done:
if (prvKey) SECKEY_DestroyPrivateKey(prvKey);
return rv;
}
int
Server::wrapKey(PK11SymKey *key, SECKEYPublicKey *pubKey, SECItem **ret)
{
int rv = 0;
SECItem *data;
SECStatus s;
data = (SECItem *)PORT_ZAlloc(sizeof(SECItem));
if (!data) { rv = 1; goto done; }
// Allocate space for output of wrap
data->len = SECKEY_PublicKeyStrength(pubKey);
data->data = new unsigned char[data->len];
if (!data->data) { rv = 1; goto done; }
s = PK11_PubWrapSymKey(CKM_RSA_PKCS, pubKey, key, data);
if (s != SECSuccess) { rv = 1; goto done; }
*ret = data;
data = 0;
done:
if (data) SECITEM_FreeItem(data, PR_TRUE);
return rv;
}
// Example of how to do a raw export (no wrapping of a key)
// This should not be used. Use the RSA-based wrapping
// methods instead.
int
Server::rawExportKey(PK11SymKey *key, SECItem **res)
{
int rv = 0;
SECItem *data;
SECStatus s;
s = PK11_ExtractKeyValue(key);
if (s != SECSuccess) { rv = 1; goto done; }
data = PK11_GetKeyData(key);
*res = SECITEM_DupItem(data);
if (!*res) { rv = 1; goto done; }
done:
return rv;
}
// Initialize the NSS library. Normally this
// would be done as part of each server's startup.
// However, this example uses the same databases
// to store keys for server in the "cluster" so
// it is done once.
int
InitNSS()
{
int rv = 0;
SECStatus s;
s = NSS_InitReadWrite(".");
if (s != SECSuccess) rv = 1; // Error
// For this example, we don't use database passwords
PK11_InitPin(PK11_GetInternalKeySlot(), "", "");
return rv;
}
int
main(int argc, char *argv[])
{
int rv;
Server *server1 = 0;
Server *server2 = 0;
// Initialize NSS
rv = InitNSS();
if (rv) { cout << "InitNSS failed" << endl; goto done; }
// Create the first "server"
server1 = new Server("Server1");
if (!server1 || server1->Init())
{
cout << "Server1 could not be created" << endl;
rv = 1;
goto done;
}
// Generate encryption and mac keys. These keys will
// be used by all the servers in the cluster.
rv = server1->GenerateKeys();
if (rv) { cout << "GenerateKeys failed" << endl; goto done; }
// Now that everything is ready, start server1. This loads
// the encryption and MAC keys from the "files"
rv = server1->Start();
if (rv) { cout << "Cannot start server 1" << endl; goto done; }
// Create a second server in the cluster. We will need
// to transfer the keys from the first server to this
// one
server2 = new Server("Server2");
if (!server2 || server2->Init())
{
cout << "Server2 could not be created" << endl;
rv = 1; // Error
goto done;
}
// Transfer the keys from server1
{
SECItem *wrappedEncKey = 0;
SECItem *wrappedMacKey = 0;
SECItem *pubKeyData = 0;
// Get the public key for server 2 so that it can
// be sent to server 1
rv = server2->ExportPublicKey(&pubKeyData);
if (rv) { cout << "ExportPublicKey failed" << endl; goto trans_done; }
// Send the public key to server 1 and get back the
// wrapped key values
rv = server1->ExportKeys(pubKeyData, &wrappedEncKey, &wrappedMacKey);
if (rv) { cout << "ExportKeys failed" << endl; goto trans_done; }
// Print - for information
cout << "Wrapped Encryption Key" << endl;
printBuffer(wrappedEncKey->data, wrappedEncKey->len);
cout << "Wrapped MAC Key" << endl;
printBuffer(wrappedMacKey->data, wrappedMacKey->len);
// Import the keys into server 2 - this just puts the wrapped
// values into the "files"
rv = server2->ImportKeys(wrappedEncKey, wrappedMacKey);
if (rv) { cout << "ImportKeys failed" << endl; goto trans_done; }
trans_done:
if (wrappedEncKey) SECITEM_FreeItem(wrappedEncKey, PR_TRUE);
if (wrappedMacKey) SECITEM_FreeItem(wrappedMacKey, PR_TRUE);
if (pubKeyData) SECITEM_FreeItem(pubKeyData, PR_TRUE);
}
if (rv) goto done;
// Start server 2 - this unwraps the encryption and MAC keys
// so that they can be used
rv = server2->Start();
if (rv) { cout << "Cannot start server 2" << endl; goto done; }
// List keys in the token - informational
{
PK11SlotInfo *slot = 0;
SECKEYPrivateKeyList *list = 0;
SECKEYPrivateKeyListNode *n;
slot = PK11_GetInternalKeySlot();
if (!slot) goto list_done;
cout << "List Private Keys" << endl;
list = PK11_ListPrivKeysInSlot(slot, 0, 0);
if (!list) goto list_done;
for(n = PRIVKEY_LIST_HEAD(list);
!PRIVKEY_LIST_END(n, list);
n = PRIVKEY_LIST_NEXT(n))
{
char *name;
name = PK11_GetPrivateKeyNickname(n->key);
cout << "Key: " << name << endl;
}
list_done:
if (slot) PK11_FreeSlot(slot);
if (list) SECKEY_DestroyPrivateKeyList(list);
cout << "Done" << endl;
}
// Let's see if the keys are the same
rv = server1->CompareKeys(server2);
if (rv) { cout << "Key Comparison failed" << endl; }
server1->Shutdown();
server2->Shutdown();
done:
if (server1) delete server1;
if (server2) delete server2;
NSS_Shutdown();
return rv;
}